skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oleksy, Isabella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Temperate lakes worldwide are losing ice cover but the implications for under‐ice thermal dynamics are poorly constrained. Using a 92‐year record of ice phenology from a temperate and historically dimictic lake, we examined trends, variability, and drivers of ice phenology and under‐ice temperatures. The onset of ice formation decreased by 23 days century−1, which can be largely attributed to warming air temperatures. Ice‐off date has become substantially more variable with spring air temperatures and cumulative February through April snowfall explaining over 80% of the variation in timing. As a result of changing ice phenology, total ice duration contracted by a month and more than doubled in interannual variability. Using weekly under‐ice temperature profiles for the most recent 36 years, we found that shorter ice duration decreased winter inverse stratification and was associated with an extended spring mixing period. We illustrate the limitations of relying on discrete ice clearance dates in our assumptions around under‐ice thermal dynamics by presenting high‐frequency under‐ice observations in two recent winters: one with intermittent ice cover and a year with slow spring ice clearance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. LakeBeD-US: Ecology Edition is a harmonized lake water quality dataset containing time series and vertical profiles of 21 lakes in the United States monitored by long-term monitoring institutions. These institutions include the North Temperate Lakes Long-Term Ecological Research program (NTL-LTER), Niwot Ridge Long-Term Ecological Research program (NWT-LTER), National Ecological Observatory Network (NEON), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term Research in Environmental Biology (LTREB) site in collaboration with the Western Virginia Water Authority. The data include depth-discrete observations of 17 water quality variables including temperature, dissolved oxygen, chemical properties, Secchi depth, and more. Observations are divided into data collected by automated sensors at a relatively high temporal frequency and manually sampled data at a relatively low temporal frequency. All data were collected in situ. The data are available as Apache Parquet files, and the included R scripts give guidance on how to utilize and query the dataset in R. LakeBeD-US: Ecology Edition is an ecological science-oriented companion to LakeBeD-US: Computer Science Edition. The Computer Science Edition is available on the Hugging Face Hub. 
    more » « less
  3. Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color. 
    more » « less
  4. Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. Lake primary production is strongly controlled by inputs of nutrients and colored dissolved organic matter. While past studies have developed mathematical models of this nutrient-color paradigm, broad empirical tests of these models are scarce. We compiled data from 58 diverse and globally distributed and mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. These lakes varied widely in size (0.02-2300 km2), pelagic gross primary production (20-8000 mg C m-2 d-1), and other characteristics. The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP and ER derived from those data. In addition, the data package includes median in-lake and stream concentrations of dissolved organic carbon and total phosphorus for a subset of 18 of those lakes. 
    more » « less
  5. Abstract For over a century, ecologists have used the concept of trophic state (TS) to characterize an aquatic ecosystem's biological productivity. However, multiple TS classification schemes, each relying on a variety of measurable parameters as proxies for productivity, have emerged to meet use‐specific needs. Frequently, chlorophyll a, phosphorus, and Secchi depth are used to classify TS based on autotrophic production, whereas phosphorus, dissolved organic carbon, and true color are used to classify TS based on both autotrophic and heterotrophic production. Both classification approaches aim to characterize an ecosystem's function broadly, but with varying degrees of autotrophic and heterotrophic processes considered in those characterizations. Moreover, differing classification schemes can create inconsistent interpretations of ecosystem integrity. For example, the US Clean Water Act focuses exclusively on algal threats to water quality, framed in terms of eutrophication in response to nutrient loading. This usage lacks information about non‐algal threats to water quality, such as dystrophication in response to dissolved organic carbon loading. Consequently, the TS classification schemes used to identify eutrophication and dystrophication may refer to ecosystems similarly (e.g., oligotrophic and eutrophic), yet these categories are derived from different proxies. These inconsistencies in TS classification schemes may be compounded when interdisciplinary projects employ varied TS frameworks. Even with these shortcomings, TS can still be used to distill information on complex aquatic ecosystem function into a set of generalizable expectations. The usefulness of distilling complex information into a TS index is substantial such that usage inconsistencies should be explicitly addressed and resolved. To emphasize the consequences of diverging TS classification schemes, we present three case studies for which an improved understanding of the TS concept advances freshwater research, management efforts, and interdisciplinary collaboration. To increase clarity in TS, the aquatic sciences could benefit from including information about the proxy variables, ecosystem type, as well as the spatiotemporal domains used to classify TS. As the field of aquatic sciences expands and climatic irregularity increases, we highlight the importance of re‐evaluating fundamental concepts, such as TS, to ensure their compatibility with evolving science. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026